Econ 301 Intermediate Micro
Problem Set 2 Solutions

1. \(P(Q) = 600 - 0.01Q^2 \) \(P'(Q) \cdot Q = 100 + 0.04Q^2 \)

 a) \(600 - 0.01Q^2 = 100 + 0.04Q^2 \)

 \(500 = 0.05Q^2 \)

 \(Q^2 = \frac{500}{0.05} = 10000 \)

 \(Q = 100 \)

 \(P^* = 600 - 0.01(10000) = 500 \)

 \(b) \quad CS^* = \int_0^{Q^*} P(Q) - P^* \, dQ \)

 \(= \int_0^{100} 600 - 0.01Q^2 - 500 \, dQ \)

 \(= \left[100Q - \frac{0.01}{3}Q^3 \right]_0^{100} \)

 \(= 100(100) - \frac{0.01}{3}(100)^3 - \left[100(0) - \frac{0.01}{3}(0)^3 \right] \)

 \(= 10,000 - \frac{10,000}{3} = 6,666.67 \)
\[PS^* = \int_0^{Q^*} p^* - p(Q^*) \, dQ = \int_0^{100} 500 - 100 - 0.04Q^2 \, dQ\]

\[= \left[100Q - \frac{0.04}{3}Q^3\right]_0^{100} = \$1,264.67\]

c) \[P_{tax}(Q^D) = P(Q^D) - T = 600 - 0.01Q^2 - 2\]

\[= 598 - 0.01Q^2\]

so new equilibrium:

\[598 - 0.01Q^2 = 100 + 0.04Q^2\]

\[498 = 0.05Q^2\]

\[Q^2 = \frac{498}{0.05} = 9960\]

\[Q_{tax} = \sqrt{9960} = \$99.80\]

\[P_{tax} = 598 - 0.01(9960) = \$498.40\]

\[P_{tax} = \$500.40\]

Note: I set the problem up so that the tax is on the consumers. All answers on the producers are the same.
d) \(CS^{tan} = \int_0^{Q_{tan}} (P(Q) - P_{tan}) \, dQ = \int_0^{99.8} (600 - 0.01Q^2 - 500) \, dQ \)

\[= \left[600Q - \frac{0.01}{3}Q^3 \right]_0^{99.8} = 6,626.71 \]

\(PS^{tan} = \int_0^{Q_{tan}} (P(Q) - P_{tan}) \, dQ = \int_0^{99.8} (198.4Q - 100 - 0.04Q^2) \, dQ \)

\[= \left[99.8Q^2 - \frac{0.04}{3}Q^3 \right]_0^{99.8} = 2,6506.83 \]

\(TR^{tan} = T^\circ Q_{tan} = 99.8(\pi) = 199.60 \)

e) \(DWL^{tan} = CS^x + PS^x - CS^{tan} - PS^{tan} - TR^{tan} \)

\[= 6,666.67 + 2,666.67 - 6,626.71 - 2,6506.83 - 199.60 = 99.20 \]
2. Quota at 30 purses

a) \[p_{\text{quota}} = \mathbb{P}(Q^0 = 30) = \frac{600 - 0.01(30)^2}{591} \]

\[= \$591 \]

\[\text{so} \quad CS_{\text{quota}} = \int_0^{30} p_{\text{quota}} \, dQ = \int_0^{30} 600 - 0.01Q^2 - 591 \, dQ \]

\[= \left[9Q - 0.01Q^3 \right]_0^{30} = 180 \]

\[PS_{\text{quota}} = \int_0^{30} p_{\text{quota}} - \mathbb{P}(Q^0) \, dQ = \int_0^{30} 591 - 100 - 0.04Q^3 \, dQ \]

\[= \left[491Q - 0.04Q^3 \right]_0^{30} = 14,370 \]

b) \[DWL_{\text{quota}} = CS^k + PS^k - CS_{\text{quota}} - PS_{\text{quota}} \]

\[= 6,666,667 + 2,300,000 - 180 - 14,370 \]

\[= 8,188,036.4 \]

c) \[p_{\text{floor}} = \$591, \text{so} \quad Q_{\text{floor}} = \frac{600 - 0.01Q^2}{591} \]

\[591 = \mathbb{P}(Q^0) = 600 - 0.01Q^2 \]

\[Q^2 = \frac{9}{0.01} = 900 \]

\[Q = 30 \]
So \(CS_{\text{floor}} = \int_0^{Q_{\text{floor}}} P(Q) - p_{\text{floor}} dQ = \int_0^{30} 600 - 0.01Q^2 - 8Q dQ \)

\[= \left[9Q - \frac{0.01}{3}Q^3 \right]_0^{30} = 180 \]

\(PS_{\text{floor}} = \int_0^{Q_{\text{floor}}} P(Q) - P(Q^*) dQ = \int_0^{30} 591 - 100 - 0.04Q^2 dQ \)

\[= \left[591Q - \frac{0.04}{3}Q^3 \right]_0^{30} = 14,370 \]

Same as 4) \(\text{The quota!} \)

d) \(DwC_{\text{floor}} = CS^* + PS^* - CS_{\text{floor}} - PS_{\text{floor}} = 18,783.34 \)

Same as the quota!

e) elf a quota at \(Q \) induces a market price at \(P \) if a price floor at \(P \) induces an equilibrium quantity of \(Q \), then there is no difference between the two in terms of \(CS, PS, \) etc.

This is true in general — every price regulation has a corresponding quantity regulation that accomplishes the same thing. The caveat of course is that we are ignoring costs of implementation.
3. I made a typo which made this problem very difficult to solve by hand.

The correct inverse demand curve is

\[P(Q^d) = 10 - 2Q^d \text{ not} \]

\[P(Q^d) = 10 - 2Q^2. \]

So this question was not graded.